Abstract

- Proposed a Euclidean Distance Transform (EDT) based skeletonization method to find the midline of the vessel.
- Provide a convenient method to measure the vessel diameter using the midline from the images.

Calculation of the Midline

- **Make Binary Image**
 Automatically find the global threshold T, change pixels with gray level values more than T (object points) into 255 and pixels with values not more than T (background points) into 0.

- **Euclidean Distance Transform (EDT)**

 \[
 D_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
 \]

 $O(x,y)$ is an object point in the image, E is the Euclidean Distance value of the point O, $N(x,y)$ is the nearest boundary point of O.

- **Calculate the Gradient Vector Field of the EDT Map**
 After getting the distance transform of the image, we can treat the distance map as a mountain where the skeleton of the image is just the ridge of the mountain. Z_1, Z_2, Z_3 are nine points in a 3×3 filter with Z_1 in the center, the gradient value of object point $O(i,j)$ is defined as:

 \[
 \text{grad}(i,j) = 4 \times \text{grad}(i,j)'
 \]

- **Find the Maximum of the EDT Map, Critical Points and Gradient Path of each Points**
 Name the point with the maximum of the EDT as MAX. Critical points: object points with local maximal distance value and minimum gradient value. $P = \{P_1, P_2, \cdots , P_n\}$ is an 8-connected path, the gradient length is defined as:

 \[
 L = \sum_{ij} |\text{grad}(i,j)|
 \]

 Gradient distance of two points r_1 and r_2 is defined as minimum over the gradient lengths of all 8-connected paths joining them. Gradient path: the 8-connected path with the smallest gradient distance.

 All object points $O(i,j)$ has a data structure (D_{ij}, P_{ij}). D_{ij} is the gradient distance value between $O(i,j)$ and MAX, P_{ij} is the coordinates of the point before $O(i,j)$ along the gradient path (i.e. the parent point).

 Set $D(\text{MAX}) = 0, P(\text{MAX}) = \text{null}$.

 Divide the image into four quadrants with MAX as the origin. Scanning from MAX to four corners of the image. For each point $O(i,j)$:

 \[
 D(i,j) = \min(D1, D2, \cdots , D8) + \text{grad}(i,j)
 \]

 \[
 P(i,j) = P_{ij}
 \]

 $P(i,j)$ is the neighbors of $O(i,j)$ with the smallest gradient value. Then scan the whole image from four corners to their diagonal corners. Each corner will scan twice, beginning with two different directions.

- **Connect the Skeleton Points**
 1. Find the critical point that has the largest D. Use KEY to record its coordinate.
 2. If $P(\text{KEY}) = \text{MAX}$, go to 4; else if KEY is critical point, remove it by doing $\text{Criticalpoint}[\text{KEY}] = \text{false}$.
 3. $\text{Skeleton}[\text{KEY}] = \text{true};$ KEY = P(\text{KEY}); go back to 2
 4. If there is no critical point, stop; else go to 1

Boundary Extracting

The boundary of a set A, denoted by $\partial(A)$, can be obtained by first eroding A by a suitable structuring element B and then performing the set difference between A and its erosion $\rho(A) = A - (A \ominus B)$.

Calculation of the Vessel Diameter

- **Slope calculation**
 Use liner regression to calculate the slope of a given skeleton point (x,y)

 \[
 b = \frac{\left(\sum x_i \sum x_i \right) - m \left(\sum x_i y_i \right)}{\left(\sum x_i \right)^2 - m \left(\sum x_i^2 \right)}
 \]

 where $(x_i, y_i), i=1,2,\ldots,m$ are the neighbor skeleton points of $O(x,y)$.

 Since the screen uses left hand coordinates, the slope k' on the screen should be $b' = -1/k'$ and the slope of the perpendicular line will be $k = -1/k'$.

- **Distance calculation**
 The diameter of vessel at the skeleton point (x_0,y_0) is

 \[
 d = \sqrt{(x_0-x_1)^2 + (y_0-y_1)^2}
 \]

 Line $x = ax + by + c$ intersects with border on (x_1,y_1) and (x_2,y_2). Real vessel diameter is $d = \text{display resolution} \times k' \sqrt{a^2 + b^2}$ where k' depends on the geometry of the ultrasound scanning and the screen’s display resolution.

Conclusion

We have proposed an algorithm to track the blood vessel in 3D ultrasound power-mode image, followed by a technique to measure the vessel diameter interactively. The main reason we used power-mode image is that it offers automatic object segmentation, i.e., the power-mode image only shows the blood flow information inside vessel structure with no information displayed for surrounding tissue.